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Generic multifractality in exponentials of long memory processes
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We find that multifractal scaling is a robust property of a large class of continuous stochastic processes,
constructed as exponentials of long-memory processes. The long memory is characterized by a power law
kernel with tail exponent ¢+1/2, where ¢>0. This generalizes previous studies performed only with ¢=0
(with a truncation at an integral scale) by showing that multifractality holds over a remarkably large range of
dimensionless scales for ¢>0. The intermittency multifractal coefficient can be tuned continuously as a
function of the deviation ¢ from 1/2 and of another parameter o> embodying information on the short-range
amplitude of the memory kernel, the ultraviolet cutoff (“viscous™) scale, and the variance of the white-noise
innovations. In these processes, both a viscous scale and an integral scale naturally appear, bracketing the
“inertial” scaling regime. We exhibit a surprisingly good collapse of the multifractal spectra {(¢) on a universal
scaling function, which enables us to derive high-order multifractal exponents from the small-order values and

also obtain a given multifractal spectrum {(g) by different combinations of ¢ and o”.
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I. INTRODUCTION

Generalizing the cascade models that started with Rich-
ardson [1] and Kolmogorov [2], multifractal cascades have
been introduced in turbulence [3,4] to model the anomalous
scaling exhibited by the moments of the velocity increments
in hydrodynamic turbulence (see, for instance [5] and refer-
ences therein). They have been since applied to many other
complex fields including fractal growth processes, geophys-
ical fields, high energy particle physics, astronomy, biology,
and finance [6]. The constructions involved in multifractal
cascades are based on hierarchical geometries coupled with
multiplicative noise and form discrete hierarchical cascades
[7]. They have been very useful to highlight a general
mechanism for intermittency and multifractality which re-
flects the presence of intermittent bursts of fluctuations with
long-range correlations. Accordingly, the long-range correla-
tions are seen to result from the large-scale structures that
impact the smaller scales through a hierarchical cascade. But
discrete cascades have limitations and defects such as spuri-
ous effects due to the discreteness (scaling holds only for
certain scale ratios [8]), nonstationarity, and absence of cau-
sality in the time domain (see, however [9]).

Here, we study the multifractal properties of a class of
continuous stochastic processes, constructed as exponentials
of long-memory processes with power law memory. Previous
works briefly reviewed below have been concerned with the
case where the power law memory has a tail exponent equal
to 1/2, which leads to logarithmically decaying correlation
functions and the necessity for a regularization at large time
scales, i.e., the introduction of a so-called integral scale. With
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logarithmic correlation functions, previous works have
shown that this class of processes exhibit the property of
multifractality. Here, we extend the problem to power law
memory with tail exponent ¢+ 1/2 which can vary arbitrarily
above 1/2. As a consequence of the faster-than-logarithmic
decay of the correlation function of the process, the property
of multifractality cannot hold exactly anymore. We show,
however, that multifractality holds over a remarkably large
range of dimensionless scales and that the intermittency co-
efficients can be tuned continuously as a function of the de-
viation ¢ from 1/2 of the exponent of the power law
memory and of another parameter o> embodying information
on the short-range amplitude of the memory kernel, the ul-
traviolet cutoff scale, and the variance of the white-noise
innovations. For this, we present a motivated robust algo-
rithm to determine the exponents {(g) of the multifractal
spectrum that we apply on our numerically determined struc-
ture functions or moments of the stochastic process. We ex-
hibit a surprisingly good collapse of the multifractal spectra
on a universal scaling function, which enables us to derive
high-order multifractal exponents from the small-order val-
ues. The scaling ansatz is validated by direct numerical
evaluations of integral expressions of the moments of orders
up to g=5. Our results offer an interesting generalization of
the class of multifractal random walks introduced recently
and provide a physically interpretable source of multifractal
intermittency in terms of the parameters ¢ and o°. Our re-
sults have potential use in all the fields in which multifractal
properties have been discussed in the time domain. For in-
stance, they provide a rational for the approximate multifrac-
tal signatures observed in simple agent-based models of so-
cial networks [10], without the need to justify an exact
logarithmic scaling for the correlation function of the loga-
rithm of the observable.
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Our investigation is in part motivated by a recently intro-
duced earthquake model [18,19], deriving from the physics
of thermally activated rupture and long memory stress relax-
ation for earthquakes. In addition to earthquakes, another
natural application is finance. Indeed, the initial argument of
Ouillon and Sornette [18,19] concerned the time decay of the
conditional expectation of the response function, called the
Omori law for the decay of the number of aftershocks in the
context of seismology. This conditional temporal multifractal
response function obtained in [18,19] generalized the predic-
tion for the multifractal random walk discussed in Ref. [15],
which was tested empirically on financial time series. Other
possible applications include the scientific fields which have
been reported to exhibit multifractality, such as hydrody-
namic turbulence, meteorological and hydrological time se-
ries, and the internet.

The organization of the paper is the following. Section II
presents a short review to position the stochastic process
which we also define. Section III defines the effective mul-
tifractal exponents and presents a simple efficient method for
their estimation. Section IV focuses on the scaling properties
of the second-order moment and its associated exponent
£(2). Section V presents our main results for the higher-order
moments and their exponents {(g¢). Section VI offers some
numerical and mathematical insights on the origin of the
effective multifractality. Section VII concludes.

II. STOCHASTIC CONTINUOUS PROCESSES AS
EXPONENTIALS OF PROCESSES WITH POWER LAW
MEMORY WITH ARBITRARY EXPONENTS

Recently, inspired by the logic of the construction of dis-
crete hierarchical cascades, several works have divised genu-
ine stochastic continuous stationary processes which repro-
duce their main properties [11-17]. In particular, the so-
called multifractal random walk (MRW) has been introduced
by Bacry, Delour, and Muzy as the only continuous stochas-
tic stationary causal process with exact multifractal proper-
ties and Gaussian infinitesimal increments [11]. Sornette er
al. [15] have shown that the increments §,X(¢) at finite scale
7 of the MRW can be approximated by

t

5.X(1) = J AW, (i )e ", (1
-7

where §.X(1)=X(t+7)—X(¢), W,(¢) denotes a Wiener process

(with unit diffusion coefficient) and w,(f) can be expressed

as an autoregressive process

t
1) = o)+ f dWy(t")h(t—1'), )
where wg is a constant, W,(¢") denotes a second Wiener pro-
cess (with unit diffusion coefficient) which is uncorrelated
with W, () and the memory kernel /2 (-) is a causal function
specified by its Fourier transform

Tf
[ﬁr(f)]2=2)\2j“'l f @dwowln(ﬁ)) G

0

The expression (3) shows that
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2T
h(t") ~ K, e

— forr<t' <T, (4)
where the so-called integral scale 7" delineates the boundary
beyond which the correlation vanishes exactly. This slow
inverse square-root power law decay (4) of the memory ker-
nel in Eq. (2) ensures the long-range logarithmic dependence
of the correlation function of w,(f) [15], which is one impor-
tant ingredient for the multifractality of 8,X(¢). Schmitt [16]
has studied in detail the stochastic process (1) and (2) with a
kernel K (1) exactly given by the square-root power law (4)
for ¢’ between scale 7=1 and 7, with a smooth regularization
for t<<7. Not surprisingly, this process exhibits multifractal-
ity in the range of scales between 7 and 7.

We study the positive stochastic process J,X(¢) generaliz-
ing Egs. (1) and (2) with Eq. (4), defined by

8. X(t) = ft w(tdt',  with u(r) = ke, (5)
with w(z) of the form (2)
w(r) = f dW(t"h(t-1"), (6)

where W(¢) denotes a Wiener process (with unit diffusion
coefficient) and

h(r) = g

WH (1),

x=1t€, (7)

where € is some “microscopic” characteristic scale, regular-
izing the singularity of the power law in the propagator h(r)
at r=0 and H(z) is the unit step Heaviside function ensuring
the condition of causality inherent to most applications.
Compared with Eq. (1), we do not introduce the noise dW,
because, if we did, being uncorrelated with dW in Eq. (6), all
even-order moments calculated below would receive a con-
stant contribution from it. This would not be different from
the result obtained here by removing the stochastic term dW,
and replacing it by the constant x> 0. For the sake of sim-
plicity of notations, we thus make the choice of removing
dW, without loss of generality with respect to the multifrac-
tal properties of the process X(¢) defined in Eq. (5).

The main departure from the previously cited works is to
consider an exponent %+ ¢ larger than 1/2 for the power law
decay of the memory kernel A(z). As already mentioned, one
can prove rigorously [14] that the process (1) and (2) with
Eq. (3), whose power law approximation for the memory
kernel has the exact exponent 1/2, i.e., ¢=0, has a logarith-
mic decaying covariance function of the auxiliary stationary
Gaussian stochastic process w(r)

(oot + 7)) ~ 1n<§>, F<T. (8)

associated with the multifractal signature of the process X(r)
given by
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([6.X(0)1%) = alq) 7,

In expression (9), the angle brackets denote a statistical av-
eraging and the multifractal “spectrum” {(g) has the para-
bolic form

for 7<T. 9)

AT
Z(q)—<1+2>61 i (10)
where N2=-{"(0) is the so-called intermittency coefficient. In
contrast, the existence of multifractality defined by the non-
linear spectrum (g) has not been studied previously for the
process (5) and (7) with nonzero values ¢>0. It is not ob-
vious a priori that multifractality will be observed because
the deviation from 1/2 for the exponent of the power law
decay of the memory kernel implies that the covariance func-
tion of the stochastic process w(f) is no more logarithmic,
which was the fundamental reason for the existence of mul-
tifractality in the MRW. However, Ouillon and Sornette
[18,19] have recently shown that the process (5) and (7) with
nonzero values ¢ >0 has robust multiscaling properties.
They have derived this process from the physics of thermally
activated rupture and long memory stress relaxation for
earthquakes, and have shown that this process predicts that
seismic decay rates after mainshocks follow approximately
the Omori law ~1/#” with exponents p(M) linearly increas-
ing with the magnitude M of the mainshock, in agreement
with observations [18,19]. Such multiscaling suggests that
the property of multifractality in the sense of Eq. (9) should
also be present.

Our investigation is also relevant to other domains, such
as the financial markets, which also exhibit similar proper-
ties. Actually, the conditional relaxation found by Ouillon
and Sornette [18,19], which in part motivated the present
work, was first derived for the MRW to describe financial
markets [15]. Indeed, in the context of financial time series,
the MRW is only one among a rich literature on long-
memory processes, from fractionally integrated ARMA and
ARCH processes [20-22] to multifractal cascade models
[23-29]. The class of fractionally integrated processes does
not exhibit multifractality but only a much weaker form of
apparent multifractality [30] than reported in our present pa-
per and we do not consider it further. On the other hand, as
mentioned briefly in the Introduction, the MRW and our
model can be viewed as the stationary continuous-time de-
scendant of the discrete multifractal cascade models [23-29].
They improve on them by removing spurious effects due to
discrete scales, nonstationarity, and noncausality.

A significant difference between the process (5) and (7)
with nonzero values ¢>0 and with ¢=0 is that no integral
scale T is needed to regularize the theory. Furthermore, all
moments {[ §.X(¢)]9) are finite for ¢ >0, whereas all the mo-
ments of order ¢ > g for ¢=0, where g satisfies to equation
{(g+)=1, are mathematically infinite. This divergence signals
that the probability density function (PDF) of the increments
8,X(1) is heavy-tailed with an exponent equal to or smaller
than g.. Using extreme value considerations to tackle the
competition between the distribution of the noise in the w
process and the long-range correlation, Muzy et al. showed
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that the observable tail exponent w is smaller than the value
g+ given by {(g«)=1 by a very large amount and is actually
determined by u=g" where ¢ is the solution of D[a(g")]
=0 [31]. The absence of divergence of all moments of the
PDF for ¢ >0 excludes a heavy tail but not fat tails of the
PDF of increments, such as stretched exponentials (which
are known to approach arbitrary well any power law, see [32]
and Chap. 2 of [33]). In other words, the existence of all the
moments does not exclude the possibility of a fat tail in the
form of a stretched exponential PDF. Note that our model
has by definition an intrinsic ultraviolet scale €. It is then
worthwhile to mention that all moments of MRW processes
observed at noninfinitesimal resolution (in other words, ob-
served at a finite resolution) also exist and are finite. It is
only when taking the continuous limit that all the moments
of MRW processes diverges above the order ¢ discussed
above. The detailed exploration of the exact shape of the
PDF of our model and of the MRW at finite resolutions is a
critical question in turbulence and financial applications and
deserves a separate treatment which will be presented else-
where. For our present purpose, it is sufficient to state that, if
multifractality exists for ¢>0, it may be observed for any
q=0.

In addition to ¢, the other key parameter controlling the
multifractal properties of the process (5) and (7) will be
shown to be

a'zzf hz(t)dtzhﬁi. (11)
0 2¢

Note the divergence of o for ¢— 0, for which the integral
scale must be reintroduced to regularize the theory.

II1. DEFINITION AND DETERMINATION OF EFFECTIVE
MULTIFRACTAL EXPONENTS

A. Definitions and notations

A general theoretical characterization of the increments
(5) is offered by the moment functions defined by

q
=(ui) [ GOy—x) (12)
i=1
k=i+1

q
M(th”',tq): Hﬂ(tr)
r=1

of the lognormal density u(r)=ke®? defined in Eq. (5). In
Eq. (12), we use the following notations: x;=t;/¢,
(uiy= K1e”TR, G(y)=e M), d(y)=1-C(y),
(13)

where C(z) is the normalized [C(0)=1] covariance function
of the Gaussian process w(f) defined in Eq. (6),

T 1 (7
C(Z) = ;L h(t)h(t + 7)dt. (14)

We start our investigation of the multifractal properties of
the increments 8,X(¢) defined in Eq. (5) by calculating the
moment ([ 5,X(¢)]7) for g=2 and checking if the power law
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scaling of the form (9) holds with an exponent £(2) smaller
than 2. If this is the case, and from the fact that £(0)=0 and
{(1)=1, we can conclude that {(g) is a nonlinear function of
¢, the hallmark of multifractality. The fact that {(1)=1 re-
sults from the positivity of the stationary density wu(z).

In order to get the exponent {(2), let us study the normal-
ized second moment

y y
S,(y) = ﬁQQXU)]Z) = jo dxlfo dx,G(xy = x1).

(15)

For the numerical analysis of Eq. (15), we use the more
convenient representation

y
Sa(y) =2J (y = x)G(x)dx. (16)
0

The question we address is whether and how S,(y) can be
approximated by the power law

Sy(y) = Agy*®. (17)

B. Properties associated with the second-order moment

First, let us determine the conditions on G(x) for which
the form (17) is exact. For arbitrary behaviors of S,(y), one
can always introduce a local exponent defined by

dIn S
(0.y) = H50), (18)

dlny
which recovers £(2,y)={(2) if the power law (17) holds ex-
actly. In the general case where S,(y) is not a pure power
law, we can write

2
{2.y)=7 “AG)’ (19)
where
y
f xG(x)dx
A=22 xp=2—— (o)
JO G(x)dx

Thus £(2,y) is independent of y and the scaling law (17) is
exact if X(y) is proportional to y, where X(y) has the inter-
esting interpretation of being the barycenter of the segment
[0,y] whose mass density is G(y).

It is easy to show that X(y)~y if and only if G(y) is a
constant or a pure power law G(y) ~y"‘2, with some expo-
nent that we denote 0 <<\?><1 for a reason that will be clear
soon. In the former case, X(y)=y/2, A(y)=1, which yields
the nonfractal scaling £(2,y)=2. From Eq. (13), we see that
G(y) is a constant if the covariance function C(7) of the
Gaussian process (z) defined in Eq. (14) is also a constant
that is dC(7)/d7=0. Taking the derivative of Eq. (14) with
respect to 7, integrating by part, and equating to zero for
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arbitrary values of 7 imposes the condition 2(0)=0, which
just means that the measure wu(z) is uniform, hence the trivial

exponent £(2,y)=2. The other case G(y)~y"‘2 is more in-
teresting. This yields
1-\° 1-\°
X0) =55y =AM =205 = {2.)) =22

2-\
1)

From Eq. (13), we see that this case corresponds to C(7)
being an exact logarithmic function of 7, which is the prop-
erty already mentioned above with Eq. (8) at the origin of the
exact multifractality of the process 8,X(z).

This discussion shows that, for ¢ >0, the scaling given by
Eq. (17) of the second-order moment can only hold approxi-
mately at best. In particular, the local exponent {(2,y) has a
simple regular behavior at the two boundaries y—0 and y
— o0, Indeed, due to the limits

lim G(x) =1, lim G(x) = (w)/(u?). (22)
x—0 x—©
we have
2 _
S:(y)=y"(y—0), S() =75y —=), (23)
(™)
so that
lim £(2,y) = lim £(2,y) =2. (24)
y—0 y—®

Borrowing the terminology from hydrodynamic turbulence,
these two limits (24) imply the existence of an effective “vis-
cous” scale 7, and of an integral scale 7;, such that if 7<=,
and 7= 7;, then the increments (5) are not multifractal. Note
that the limit y — oo is attained by taking € —0 at fixed 7
since y=7/€. The limit £ — 0 thus recovers a trivial regime,
in contrast with the MRW in which the role of € is played by
the scale of resolution which, when going to zero yields a
nontrivial genuine multifractal limit.

In the sequel, we will be interested in the “inertial range”
which exists if {(2,y) is a very slow function of the dimen-
sionless variable y=7/¢ over the interval from some y,> 1
to some y;>y,>> 1. In this case and if {(2,y) <2, we will be
entitled to speak about the multifractal behavior of the ran-
dom process 6X () for some wide range of scales and define
the effective exponent £(2) as the minimal value

£2)=min £(2,9), 25)

that we derive below as an optimal and efficient definition.
Having obtained {(2), we can obtain a first estimation of the
intermittency coefficient N> through the relation

N=2-{(2), (26)
which assumes that the parabolic dependence (10) holds.

C. Method of determination of the effective exponent
{2
As we pointed out, the absence of exact multifractility for
¢>0 does not prevent the process from exhibiting approxi-

011111-4



GENERIC MULTIFRACTALITY IN EXPONENTIALS OF...

mate multifractal scaling which, for all practical purposes,
can be undistinguishable from an exact one. Indeed, empiri-
cal data is always noisy and power law scaling is always
sampled on a finite (often small) range of scales [34-36].
The experimentally relevant question is thus to define scaling
from an operational viewpoint consistent with what is done
empirically. We now describe a natural and robust determi-
nation of the approximate scaling which will be seen to link
intrinsically the definition and determination of the exponent
£(2) with the existence of an integral time scale L defined
from the range over which the approximate power law scal-
ing holds.

For this, let us consider a y-interval [y,,y,]. We define
£(2,y,,y,) over this interval as

Y2
U(2,y,,y,) =arg mgin j dy[n S,(y) —=A = {In(y)|*.

J @7)

In other words, expression (27) determines £(2,y;,y,) as the
exponent { which minimizes in a OLS sense the distance
between In S,(y) and a straight line in the In y variable over
the interval [y;,y,]. Let us now introduce the parameter 7,
which measures the precision with which an approximate
power law scaling is qualified. Specifically, a power law with
exponent £(2,y;,y,) is qualified if

mi f " bl $,0)-A— P <7 (8)

Y1

Otherwise, the power law scaling is rejected. For a fixed 7,
we scan all possible values of y, and y, for which condition
(28) is verified and we select the couple (y;,y,) such that the
range y,/y; is maximum. We thus obtain an approximate
power law scaling with apparent exponent {(2,y;,y,) within
the confidence or noise level 7 over the maximum range
[v1,y2]. We believe that this procedure embodies in a precise
way the general fitting procedure of experimental data.

Let us study the limit 7— 0. In the case where S,(y) is not
a pure power law [and thus In S,(y) is not a perfect straight
line in Iny], the condition (28) imposes that y,/y,— 1.
Therefore, £(2,y;,y,—y;) determined by Eq. (27) yields the
local slope of the function In S,(y) in the variable Iny, in
other words

dIn$,
din(y) [,

{2,315, — 1) = (29)

Consider now the function

fyl,yzayl(yl) =1nS,(yy) = {(2,y1,y2 — y)In(y;).  (30)

This function fy; ;> .,1(y;) has at least one minimum in the
interval y € [, +20], which we call y. Close to its minimum,
the function f,; y»_,,1(y;) can be expanded up to second or-
der to obtain

Fornrn 0 = A+ (12)alln(y) = In(y) P, (31)

where
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FIG. 1. (Color online) Log-log plot of the second-order moment
S,(y) (16) and its power approximation (17) for ¢=0.01 and o
=20;30;40 (top to bottom). The corresponding exponents are equal
to {(2)=1.66;1.49;1.34.

a= d*InSy/d* n(y)],, (32)

is the second-order derivative of In S, with respect to In y,
estimated at y,. It is clear that, for small finite values of 7,
the largest range y,/y; is obtained for y,=y, (we assume
here that f is convex so that the local minimum is the global
minimum; for the range of y’s in the examples we have in-
vestigated, we have found the convexity condition to always
hold). In addition, fy ,»_.,1(y;) does not change appreciably
over a range of In(y,) proportional to 1/a"?. Thus the
smaller a is, the larger is the range over which fy; » 1 (y;)
will be almost constant and thus over which the exponent
£(2) will be well-defined and constant. This reasoning pro-
vides the algorithm to measure the approximate exponent
{(2) for a given data set, which we are going to use in a
systematic way. It is given by Eq. (29), where y, is chosen
equal to the argument y such that the second derivative (32)
is zero (or reaches the minimum positive value over the
whole range available when zero is not crossed). This is
equivalent to searching for the exponent (29) which takes the
smallest possible positive value over the range of study ac-
cording to Eq. (25).

IV. SCALING OF THE SECOND-ORDER MOMENT §,

We study the process (5), whose properties are controlled
by the two key parameters ¢ defined in Eq. (7) and o2 de-
fined in Eq. (11). We calculate the second-order structure
function S,(y) defined in Eq. (16) with y=7/€, where G(x) is
obtained from expressions (13) and (14).

As a first example, we fix ¢=0.01 and scan o2
=20;30;40. The corresponding structure functions S,(y) are
plotted in Fig. 1 as a function of y=7/¢€ in log-log scales,
together with the best power law fits shown as straight lines.
A superficial examination suggests an excellent scaling be-
havior over at least four orders of magnitude, with an expo-
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FIG. 2. (Color online) Local exponent {(2,y) as a function of
y=1/€ for o2=10 and ¢=0.002;0.004;0.006;0.008;0.01 (top to
bottom).

nent which clearly varies with o2 from 1.66 to 1.34 when o*
goes from 20 to 40. This property adds to the MRW and
previous multifractal process with ¢=0 and, as we are going
to explore in some length, allows us to control the multifrac-
tal properties continuously as a function of o as well as ¢.
Figure 2 examines more precisely the nature of the apparent
power law behavior depicted in Fig. 1 by plotting the local
exponent {(2,y) defined in Eq. (18) as a function of y in
log-scale in the range y €[1,107], for a fixed 0>=10 and
varying values of ¢=0.002 to 0.01. The first important mes-
sage of this figure is that the exponent {(2,y) is approxi-
mately constant over a large range of y values, all the more
s0, the closer ¢ is to zero (this later property is of course not
a surprise since ¢ — 0 recovers previously known multifrac-
tal processes). Interestingly, this approximately constant
value for {(2,y) has a rather large dependence on ¢ itself,
showing again that we can control the intermittency param-
eter by changing ¢ as well as 0. Another important obser-
vation is the sharp variation of £(2,y) on the left-hand side of
the range, suggesting a rather well-defined “viscous scale”
7,, which we characterize as the boundary between the re-
gion of approximate constancy of {(2,y) around the defini-
tion (25) and the region of sharp increase of {(2,y) as y
decreases below the minimum (25). In the examples shown
in Fig. 1, 7, is in the range 10°—~10¢. The closer ¢ is to 0,
the smaller is the viscous scale 7, and the better is the mul-
tifractal scaling. In contrast, it is not obvious to identify the
integral scale over the interval shown in Fig. 1 as the in-
crease of {(2,y) towards 2 has not yet occurred appreciably
even up to y=107, ensuring a rather nice approximate scaling
with anomalous multifractal exponent {(2) <2. Another way
to express this observation is that the “inertial regime” over
which the scaling of the second-order moment holds has no
well defined boundaries. Therefore the transition to the inte-
gral scale is smooth, a property also documented in hydro-
dynamic turbulence [5].

Figure 3 is the same as Fig. 1 but for a large value of ¢
=0.5 and with 0?=1 and 5. It shows that the scaling law for
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FIG. 3. (Color online) Log-log plot of second-order moment
S,(y) calculated using Eq. (16) and its power approximation (17)
for ¢=0.5 and 0?=1;5 (top to bottom). The corresponding effective
exponents are, respectively, {(2)=1.82;1.26.

S, still holds over approximately 2 decades in the horizontal
y scales (and of course more in the vertical scale). A plot
analogous to Fig. 2 for these values of ¢ and o shows ob-
viously larger deviations from a constant behavior
(not shown). As we discussed in the previous section, the
important message is that we have a rather large latitude in
changing ¢ and ¢” to exhibit a reasonable (with respect to
standard experimental precision) multifractal scaling.
Figure 4 shows the other limit of a small value of ¢
=0.001 for a large range of values of ¢2=100-500. While
we expect indeed that the multifractal scaling should extend
on large ranges as ¢ decreases to zero, the most remarkable
fact is that the exponent {(2) can be continuously adjusted at
will from 2 all the way to close to 1 by varying ¢ at fixed ¢.
Note also the large range of y scale over which the apparent

2 T T T T T

1.9

1.8

1.7

1.6

15

g2y)

14

1.3

1.2

1.1

FIG. 4. (Color online) Dependence of the local exponent £(2,y)
as a function of y=7/€ in log-scale, for ¢=0.001 and o>
=100;200;300;400;500 (top to bottom).
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FIG. 5. (Color online) Dependance of the intermittency coeffi-
cient N>=2—¢(2) as a function of o2 for different values of ¢
=0.01-0.04 (bottom to top).

exponent {(2,y) remains approximately constant: for in-
stance, for 0'2:100,<p:0.001, we measure a well-defined
constant exponent £(2)=1.81 over eight orders of magnitude.
Even for these very large ranges of scales, the known exis-
tence of an integral scale and the transition to the normal
value {(2)=2 is not seen.

Figure 5 gives a synopsis of the dependence of the effec-
tive exponent {(2) as a function of the two control param-
eters ¢ and o2 Actually, we show instead the “intermittent
coefficient” N>=2—-{(2) first introduced in Eq. (26), in anal-
ogy with the parabolic multifractal spectrum (10). The most
important observation is that \? increases linearly with o>
before saturating to 1 asymptotically for large o2’s. The up-
perbound 1 for A2 results from the following property of the
second-order moment S, obtained from the definition (16):

d*S,(y)
-7§§1=2G@)>0. (33)

The fact that the second-order derivative of S,(y) is positive
means that S,(y) increases faster than a linear function of y,
hence

(2)>1—-N<1. (34)

V. HIGHER-ORDER MOMENTS, UNIVERSAL SCALING
FUNCTION, AND MULTIFRACTAL SPECTRA

A. Definition and determination of the higher-order moments

We have also investigated the higher-order moments S3,
S,, and S5 up to order 5 of the increments 8,X(¢) defined in
Eq. (5). Moments of arbitrary orders can be obtained from
formulas generalizing expression (16) for S,, as follows:

S,0) =qlg~1) f (y=0)G, (). (35)
0

where, for g>2,
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G,(x) = G(x)fx duy -+ fx du,_,
0

0
q-2
x 11 G)Glu-x)Glxi=x).  (36)
i=1
=it
The corresponding local exponents for the higher-order mo-
ments are defined analogously to Eq. (18) and (19) as

{(g.y) = ﬁq(y) (37)
where
y
xG,(x)dx
A= 2y T (39)
fo G,(x)dx

Using these relations, we adopt the definitions generalizing
Eq. (25) for the effective exponents

{q) = min {(q,y) (39)

associated with the effective power laws

_ _ -4(q)
S, =Ay",  A,=5,,)y,"?, (40)

where y,, is the value of y which makes {(¢,y) minimum.

B. Universal scaling ansatz

Our numerical calculations of the higher-order moments
(g=<5) show that excellent scaling is observed for these mo-
ments over a wide range of the dimensionless variable y,
similarly to the case of the second-order moment S, pre-
sented in Figs. 1-3 [37]. This allows us to determine the
dependence of the effective multifractal spectrum {(g) de-
fined by Eq. (39) with respect to g, as well as o and ¢. For
this, it is convenient to use the parabolic spectrum (10) as a
proxy to extract an effective (a priori) g-dependent intermit-
tent coefficient defined by

Nigior.g) =2 ED. (41)
q(g—1)
We also make explicit in the notation A*(q; 02, ¢) the depen-
dence on the two parameters o2 and ¢. Similarly to the case
of the second-order moment, expression (35) allows us to
show that {(g) and \*(g;0”,¢) satisfy the following in-
equalities:

Uq) > 1—Ng;0%¢) <2q, (42)

which generalizes Eq. (34) for arbitrary ¢’s.

Our detailed numerical calculations suggest the conjecture
that the dependence of N\*(¢; 02, @) with respect to o2, ¢ can
be factorized as follows: A*(g; 02, ®)=2A(aq)/q, where the
factor a=a(o?, @) depends only on the parameters o and ¢
and not on ¢, and the function A(x) is monotonously increas-
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FIG. 6. (Color online) Plot of the universal scaling function
A(x), obtained from relations (41) and (43) and the numerical cal-
culation of the dependence of the effective multifractal exponents
{(g) as a function of o2, for ¢=0.001 and g=2;3;4. The slight
discrepancies between the curves in the neighborhood of x=1 can
be attributed to some systematic errors of numerical calculations.

ing. Moreover, the numerical calculations of the intermittent
coefficients show that it is an excellent approximation to
represent a(o?, ¢) as a linear function of o2, i.e., a=b(¢)0”.
This provides the following universal scaling law for the
generalized intermittency coefficients

2
N(g;07,¢) = EA(bolq)- (43)

The factor b, which is independent of ¢ and of ¢ according
to the scaling ansatz (43), can be determined from the inter-
mittency coefficient N>(¢g=2;07,¢)=A(2ba?) for ¢g=2, pre-
viously reported. Since N?(¢g=2;07, ¢) is a linear function of
o for not too large ¢2’s as shown in Fig. 5, this implies that
the function A(x)~x is linear for small x’s. Defining b such
that, for x —0, we have A(x)=x, we obtain

N(g=2;0"¢)

b)) = ——F—= (A\*<1). 44

(o) Y ( ) (44)

Taking, for instance, 02=20 for which all intermittency co-

efficients remain small, we find that b(¢p) is very well repre-

sented by the following power law dependence:

b=agf, a=058, B=0.92. (45)

Figure 6 plots the reconstructed functions A(x)

=(q/2)\*(g; 02, ) for different orders ¢g. The excellent col-
lapse provides a first validation of the scaling ansatz (43).

C. Multifractal spectra

The general scaling ansatz (43) allows us to express the
multifractal spectrum {(g) under the following form:
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FIG. 7. (Color online) Universal multifractal spectra {(g) for
©=0.004 and ¢2=10:20;30;40;50;60 (top to bottom). We com-
pare two different methods for estimating £(q): (i) the circles are the
direct numerical integration of Egs. (35) and (36); and (ii) the con-
tinuous lines are obtained by using Eq. (46) with the scaling func-
tion A(x) constructed as in Fig. 6 for g=2.

Uq)=q+(1-q)A(bo’q). (46)

Moreover if, for some particular multifractal phenomenon,
the intermittency coefficient A>=\%(2) is small compared to
1, then one can rewrite expression (46) in the more universal
form

@) =q+(1-qg)AN*q/2), (47)

whose dependence on ¢ and ¢ is completely embedded in
that of A\2. This implies that the knowledge of the intermit-
tency coefficient \? together with the scaling function A(x)
allows one to determine the multifractal spectrum for arbi-
trary orders even for g> 1.

Our prediction (47) can be checked by direct numerical
calculations of the moments up to order 5 that we have per-
formed. Figure 7 plots the multifractal spectra {(g) for ¢
=0 to 5 obtained by two methods: (i) the circles are the di-
rect numerical integration of Egs. (35) and (36) of the sto-
chastic process for ¢=0.004 and different values of o?; and
(ii) the continuous lines are obtained by using Eq. (46) with
the scaling function A(x) constructed as in Fig. 6 for g=2
and ¢=0.001 and applied to the case ¢=0.004. The agree-
ment is good, even for the large values ¢g=5. This illustrates
that different combinations of ¢ and o with fixed bo” give
the same value of the intermittency coefficient N> (for A2 not
too large) according to Eq. (43) and thus the same multifrac-
tal spectrum {(q).

Note that {(g) becomes nonconcave for large °’s at large
q’s, a property which is excluded for exact multifractal scal-
ing by the Holder inequality applied to the moments
([6,X(1)]%). The absence of concavity in a certain range of
parameters reflect the fact that multifractality is not an
asymptotic property observed at small or large values of the
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FIG. 8. (Color online) Dependence of &(y) given by Eq. (49) as
a function of y in logarithmic scale for ¢=0.01,0.02,0.05,0.1 (top
to bottom). The straight dashed line corresponds to the logarithmic
dependence Iny—0.8. Not surprisingly, the closer ¢ is to 0, the
larger is the range of Iny over which the approximation &(y)
~Iny holds.

dimensionless variable y, but only in some intermediate scal-
ing range. Nonconcavity also prevents obtaining the exact
multifractal spectrum of dimensions f(«) of singularities a,
but yields only a concave envelope of it [38].

VI. NUMERICAL AND MATHEMATICAL INSIGHTS ON
THE ORIGIN OF THE EFFECTIVE MULTIFRACTALITY

As we showed, these multifractal properties are only ef-
fective properties or approximations, as exact multifractality
only holds when C(7) defined in Eq. (14) is proportional to
the logarithm of 7 (up to an integral scale). The approximate
multifractality discussed here can be tracked back to the ap-
proximate logarithmic dependence of C(7), as we now make
clear, numerically and mathematically.

Let us consider the second-order moment S,(y). The scal-
ing (17) is a precise description of S,(y) if G(y) in Eq. (13) is
close to a power law, i.e., 0?d(y) is close to N> In y. To test if
this is the case for different values of ¢2 and ¢, we construct

8(y) = a?d(y)/IN?, (48)

which should be close to Iny to justify our results above.
Recall that, for rather small ¢° (actually, we just need that
0?=100), we have the relation (44) with Eq. (45), which
together with Eq. (48) yields

o) =20 _1=E0) 9)

b(e)  ble)
which has to be almost equal to Iny for any ¢ and ¢ to
justify our results. This is verified in Fig. 8, which plots &(y)
given by Eq. (49). As ¢ departs more and more from O,
increasing deviations from Iny occur, which reduce the
range over which scaling and multifractality can be ob-
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served. An argument similar to that presented in Fig. 8 was
proposed in [18,19] for the multiscaling of the conditional
response function (Omori law).

This argument can be made mathematically precise as fol-
lows. Let us consider the function

K(y,) =f h(x,@)h(x +y,¢)dx, (50)
0

where we redefine

1
(1 +x)(p+|/2 ’

h(x,p) = (51)

such that
1
?=K(0,p)=—. (52)
2¢

Determining how well the covariance function C(z), defined
by Eq. (14), is approximated by a logarithm of  amounts to
study how well K(y,¢) is approximated by a logarithmic
function of y.

The study of K(y,¢) is based on its explicit analytical
expression

_ \"?F«p)sec(mo)( z)“ J(Ly)y e

K(y,¢) =
0= ror i) Ty 1-2¢
13
XF(1,§+(p,E—<P,1+y), (53)

where F(a,b,c,z) is a hypergeometric function.
Let us introduce the analog of the function d(y) [see Eq.
(13)] defined by

D(v@) = 0~ K(y,¢) = ép CK(ng).  (54)

Using Eq. (53), we obtain the following asymptotic expres-
sion for D(y, ¢):

!/_
D(y,(p)z_gF(y,qo)—F(y,O)+ln(\,1+y+1), (55)

2 (] \r'm -1

valid for ¢ — 0, where

2\
F(y,cp)=p(<p)<;> , (56)
and
p(e) = “’”@r(#i@) sec(mg). (57)

We verify that the asymptotic expression (55) gives an ex-
cellent approximation to the exact expression for D(y, ¢) ob-
tained by using Eq. (53) for 1 <y=<10" for ¢=<0.1.

To reveal the dependence of D(y, ¢) with respect to y for
small ¢, we may interpret the first fraction in the right-hand
side of the relation (55) as a discrete approximation of the
derivative F'(y, ¢) of the function F(y,¢) with respect to ¢.
This leads to the following approximate relation:
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FIG. 9. (Color online) Plots of the exact function D(y, ¢) and its
approximation (61) for ¢=0.001,0.01,0.02 (top to bottom).

1 @ Vi+y+1
D(y,p) =~ EF’(y,—) + ln(?>, (58)

2 Vi+y-1
where
2\%
F’(w)=—21n[A(qo)yP<*°>](;> : (59)
with
1\re ’
ol t2)

Since In[(\T+y+1)/(V1+y=1)]=2/\y+0(1/y) for y
> 1, we can neglect this logarithmic term in Eq. (58) for ¢
<1/2 and obtain the following logarithmic-power approxi-
mation

D(y.¢) = 1n[A(<p/2>yP<¢’2>]<§)¢. 61)

Figure 9 plots the exact function D(y, ¢) and its approxima-
tion (61), showing the approximate linear dependence of
D(y,¢) as a function of Iny for a large range of y for ¢
>0.

For ¢—0, p(¢/2)—1 and we recover D(y,e—0)
—1Iny, as expected. For ¢>0, expression (61) makes ex-
plicit the deviation from a pure logarithmic dependence of
D(y, ¢) in the form of the power factor (2/y)®. The predicted
deviation from a pure logarithm gives us the possibility to
estimate the integral scale beyond which the effective multi-
fractality breaks down. We thus define the integral scale L, as
the solution of the equation

<%>¢= €, (62)
y

where €<1 measures the deviation of D(y,¢) from Iny.
This gives L.=2/€¢. Taking arbitrarily e=1/2, we obtain
Ly/,~2000 for ¢=0.1, L,,,~ 1.3 10% for ¢=0.01, and the

PHYSICAL REVIEW E 74, 011111 (2006)

astronomical value L~ 10°°! for ¢=0.001. These values
explain why the saturation of the effective multifractal scal-
ing predicted for large y is not observed for small ¢’s.

VII. CONCLUDING REMARKS

We have confirmed on the multifractal spectrum {(g) the
proposition previously introduced in the context of a model
of earthquake [18,19] that processes constructed as exponen-
tials of long-memory processes should exhibit multifractal
properties over a significant range of the parameters. In this
sense, while capturing some of the main observed properties
of the stochastic financial volatility, the exponential
Ornstein-Uhlenbeck model [39] falls short of explaining its
multifractal properties, due to the existence of only one time
scale in the Ornstein-Uhlenbeck process inside the exponen-
tial, in contrast with the power law structure of the depen-
dence of the w process in the MRW and in our model. The
initial argument of Ouillon and Sornette concerned the time
decay of the conditional expectation of the response func-
tion, called the Omori law for the decay of the number of
aftershocks in the context of seismology. This conditional
temporal multifractal response function obtained in [18,19]
generalized the prediction for the multifractal random walk
discussed in Ref. [15], which was tested empirically on fi-
nancial time series. Here, we have extended these analyses to
show that multifractality quantified in terms of structure
functions is a robust property of this class of processes de-
fined as exponentials of long memory processes.

Notwithstanding the fact that the multifractal properties
discussed here are only effective properties or approxima-
tions, we claim that there is probably no way to tell the
difference between an exact multifractal random walk or an
exact multifractal scaling from our approximate scaling laws
and approximate {(g) functions, given the noise and the lim-
ited ranges usually seen in experimental and numerical stud-
ies [34-36]. We have illustrated this claim by showing that a
given multifractal spectrum {(g) can be obtained for several
sets of parameters of our model.

What are then the differences between the MRW and our
model (5) with Egs. (6) and (7)?

First, as we made clear before, one might be able to dis-
tinguish the MRW, which has exact scaling, from the model
(5), if inhuman precision and a very large range of scales are
available.

Second, the MRW is exactly multifractal up to the integral
time scale T, which is absent (or pushed to infinity) in our
model. The detection of such an integral time scale thus pro-
vides a priori an important test for falsifying either the
MRW or our model. However, in another work with J.-F.
Muzy (in preparation), we will show that this is more easily
said than done, as any attempt to measure the integral scale T’
actually fails to provide the correct value and only gives an
apparent value which is comparable to the length L of the
time series, as long as 7 is larger than L. As we will show,
this result casts strong doubts on the validity of the determi-
nations of the integral scales in previous calibrations of the
MRW to empirical data.

Third, as we said above, the MRW has all its moments of
order ¢>¢', where g"~ 1/\ is the solution of D[a(g")]=0
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[31], which is infinite. This signals that the probability den-
sity function (PDF) of the increments of the MRW process is
heavy-tailed with an exponent smaller than (or equal to) ¢".
In contrast, our model has all its moment finite. As discussed
above, it is not yet clear whether the two models give PDFs
which can be differentiated, given the limited quality and
size of available data.

Sornette, Malevergne, and Muzy have shown that the con-
ditional relaxation of the MRW increments after a local peak
is a power law with an exponent a(s) being a continuous
function of the log-amplitude s of the peak [15]. Ouillon and
Sornette have shown that the same property holds for models
generalizing Eq. (5) with Egs. (6) and (7) by having stochas-
tic increments dW distributed according to a power law with
tail exponent w, as long as the relation (¢+1/2)u=1 holds
[18,19], where the MRW case is recovered for ¢=0 and u
=2. In another work with J.-F. Muzy, we will show that the
conditional relaxation departs from a power law when ¢
>0 but, as for the other properties, this departure is weak
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and difficult to distinguish from the pure power law result
obtained for the MRW.

In summary, while the exact mathematical properties of
the MRW and of our model (5) with Egs. (6) and (7) are no
doubt different, our model approaches arbitrarily closely the
MRW for ¢ — 0 and empirically distinguishing the two mod-
els may be beyond reach even for ¢ 0.1 or larger, given the
limited size and noisy nature of available time series.
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